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A Fourth-Order Finite-Difference Approximation 
for the Fixed Membrane Eigenproblem* 

By J. R. Kuttler 

Abstract. The fixed membrane problem All + Xu = 0 in Q, u = 0 on aQ, for a bounded 
region Q of the plane, is approximated by a finite-difference scheme whose matrix is 
monotone. By an extension of previous methods for schemes with matrices of positive 
type, 0(h 4) convergence is shown for the approximating eigenvalues and eigenfunctions, 
where h is the mesh width. An application to an approximation of the forced vibration 
problem Au + qu = J in Q, u = 0 in aQ, is also given. 

1. Introduction. Let Q be a bounded region of the plane with smooth boundary 
(90. We consider the fixed membrane problem 

(1.1) Au(x) + Xu(x) = 0, x EE ?, u(x) = 0, x E Q, 

where A is the Laplacian. In [6], this problem was approximated by difference schemes 
which were of positive type in the interior of the region. Here, we consider a difference 
scheme for (1.1) which is only monotone. However, by appropriate modifications of 
the techniques of [6], we can prove that this scheme yields 0(h4) approximations to 
the eigenvalues and eigenvectors of (1.1). The principal result is Theorem 8.1. An ap- 
plication to a forced vibration problem is also given in Section 9. 

2. The Difference Scheme. Let h > 0 be given and define the mesh Sh by 

{ (ih, ]h): i, i are integers}. 

Points x, y E Sh will be called nearest neighbors if Ix - yI = h, where we write 

Ix - Yl = ((X1 - y)2 + (X2 - y 2)1J2 

Let Q'3 be the set of points in Sh G\ Q having at least one nearest neighbor not in Q. 
One such point might be x = (xI, x2) with (x, - ah, x2), (xI, x2 -oh) E 6Q for 
0 < a. 2. If (xi + h, x2), (xI + 2h, x2), (xI, x2 + h), (xI, x2 + 2h) EE Q, we define 
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h2lh(x, Y) 3-a 3 - = 
oz 

_2(2-a) ~~y = (xl1 + h, x2), 
a a 3 

2(2 -a 

(2.1) 1 H- ,B s~ ~ Y = (xl, x2+ h), 

= l + , ~~y = (xi + 2h, x2), 

21?a 
I 

2 +a 

=-+/ jsY =(xl, x2 +2h), 

= 0, otherwise. 

Similar formulas apply at other points of Qh). One special case may arise, as shown 
in Fig. 1, where (xi, x2 + h), (xi, X2 + 2h) do not lie in U. 

FIGURE 1 

In such a case x would be excluded from the difference scheme altogether and the 
point (xl + h, x2) would be added to Q"). For the new point, formula (2.1) would be 
used with 1 < a < 2. If ao has bounded curvature and h is sufficiently small, there 
will be no difficulty with the new point. 

Next, let 912) be those points of Sh n Q, not in Q'3 or excluded, which have a 
nearest neighbor in Q'3. For x C Q12) define 

h2lh(X, y) = 4, y =x 

(2.2) = -1, lx-Y I = h, y E Sh, 

= 0, otherwise. 

Finally, let Qh be those points of Sh n Q not in Q2) kJ Q or excluded. For x C Q,, 
define 

h 1h(x,y)= 5, y=x, 

4 

(2.3) - Ix-yI = h, Y E Sh, 

- 12, Ix-yI = 2h, YESh, 

= 0, otherwise. 
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Let Qh = Qh U Q2) 9 U Q(3). We approximnate the Laplacian of a function u vanishing 
on aQ by 

(2.4) -Ahu(x) 1 E lh(X, y)u(y), x E oh. 
VE4h 

Let us agree to use C as a generic constant, whose value may change at each usage, 
but which is always independent of h. Then, if also u C C6(Q) (u has continuous sixth 
derivatives on the closure of Q), it can be seen from Taylor series expansions that 

(2.5) IAu(x) - AhU(x)j ? Ch, x h 

? Ch , x E Q(2) U OM 

Bramble and Hubbard used A,, in [2] in approximating the Dirichlet problem for 
Poisson's equation. 

Our difference scheme approximating (1.1) is 

(2.6) AhUh(X) + XhUh(x) = 0, x Qh . 

Problem (2.6) is equivalent to finding the eigenvalues and eigenvectors of the matrix 
[lh(x, Y)].VE _Qh,% In the next section, we develop some tools to use in studying this 
matrix which, however, have some independent interest. 

3. Monotone Matrices. Let A = (ai7) be an n X n matrix. We say A ? 0 if 
each aii > O and A B if B - A O. The matrix A is monotone if Ax > O implies 
x > 0 for all x. Thus, A is monotone if and only if A` exists and A` > 0. An easily 
recognized type of monotone matrix is a matrix of positive type. The matrix A is of 
positive type if A is indecomposable, the diagonal of A is positive, the off-diagonal 
elements negative, and the row sums are nonnegative with at least one strictly posi- 
tive. The following theorem is due to Price [8]: 

THEOREM 3.1. A is monotone if and only if there exists M monotone such that 

(i) M '(M - A) > 0, 
(ii) P(M-1(M -A)) < 1. 
Here p denotes spectral radius, the maximum of the moduli of the eigenvalues. Here 

and in the corollaries, the "only if" part is trivial: take M = A. This theorem general- 
izes Theorem 2.7 of Bramble and Hubbard [2]. There are a number of important corol- 
laries: 

COROLLARY 3.2. A is monotone if and only if there exists M monotone such that 

(i) M t A 
(ii) p(M-1(M - A)) < 1. 
COROLLARY 3.3. A is monotone if and only if therie exists M monotone and x > 0 

such that 
(i) M > A, 
(ii) Ax > 0. 
Proof. By the Gerschgorin circle theorem (see [7, p. 1521), 

p(M '(M - A)) ? max [M-'(M - A)x]l/xi < 1, 
* ~~~~~~~~~~~~~~~~~~~~i 

since 
0 ? [M-1(M - A)x]i = xi - [M-'Ax]i < xi, 

because Ax > 05 M` > 0 and no row of M` can be all zero. 
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COROLLARY 3.4. A is monotone if and only if there exists M monotone and x 2 0 
such that 

(i) M ? A, 
(ii) Ax > 0. 
Proof. Let a = mini [Ax]i > 0 and let e = 5/(2 maxi j:j lai I). Then x + e > 0 

and A(x + e) > 0, so the hypotheses of Corollary 3.4 are satisfied. 
COROLLARY 3.5. A is monotone if and onily if there exist M1, M2 monotone such that 

M1 ? A ? M2. 

Proof. Let x be such that M,x is the vector with all components 1. Since M1 is 
monotone, x exists and x > 0. Also, Ax > M1x > 0, so the hypotheses of Corollary 
3.4 are satisfied. 

COROLLARY 3.6. A is monotone if there is a > 0 such that A + aI is monotone and 
every eigenvalue X of A has positive real part. 

Proof. Apply Corollary 3.2. We need only show p((A + aI)-') < a-'. But 
p((A + aIY') = 1/minx la + Xj, where X runs over the eigenvalues of A. 

At this time, we also note the following: 
LEMMA 3.7. If the partitioned matrix 

_C D_ 

with A invertible has inverse 

W X 

[:;1 
then W -A-l -XCA'. In particular, if X > 0, A- > 0, C < 0, then A-' ? W. 

Proof. Since 

Y L_C D_ 0i 

we have WA + XC= L Multiply on the right by A-'. 

4. Discrete Green's Functions. The main tools in our investigations will be 
discrete analogues of Green's function. These are inverses of matrices related to 
[h21h(x, Y)]X, EQ - and their nonnegativity is crucial to the investigation. This will be 
established, using results of the previous section. 

We define then 

(4.1) -A^, *g2(x, y) = h 6(x, y), x jE h 
2 

Q, gh(x Y) = 6(X, Y), X E 
3) 

for all y E Qh. This is the discrete Green's function considered by Bramble and 
Hubbard in [2, Eq. (4.5)]. From (4.1), we see that the matrix [gh(x, Y is the in- 
verse of the partitioned matrix 

A j, 
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where A [h2Ih(x, y)] , vE Qh'kh(2). B = [12 1I,(x, y)].cph,h2) vcuh (a) h and I is the 
identity on Q,() X Q(3). It also follows from Lemma 3.7 that the matrix 
[gh(x, y)]x.pcQ'U2h(2) is the iinverse of A. In [2], it was shown that 

(4.2) gh,(x, y) > 0, x, y ( Oh, 

i.e., 9 is monotone. Since gh is the inverse, it follows that, for any function W defined 
on 0,h, all x C Oh, 

(4.3) W(x) = h 2 
ghXx, A)[-h W(y)] + Z gh(X, y) W(y). 

VEQh ' hQh (2) (3) 

This is analogous to Poisson's formula. In [2], the following properties were proved 
Of gh: 

(4.4) 9h g(x,y)_ 1, 
V C Qh (3 ) 

(4.5) ~:E gh (X, Y) C, 
V C Qh (2 ) 

(4.6) h2 ? gh(x, y) C, 
VEQh 

for all x ( Qh. Using these in (4.3), we have the inequality 

(4.7) max I WI < C[max IAh WI + h2 max IzhWjj + max I WI. 
Oh Ohs OhL(2) Oh (a) 

Now, on O3, we have 

W(x) [-h2Ah W(X) -h2 h l(X,Y) W(Y)] h2lh(X,X), 
VGQh; YFiX 

and from this and (2.1), we see that 

(4.8) max I WI Ch2 max IAh WI + 0 max I Wj, 
Qh (3) Qh (3) Oh 

where 

6 = max Z 1'h(X, y)I/lh(x, x) < 1. 
XPh ( 3 ) VCiclh;YFJX 

Putting (4.8) into (4.7) and rearranging, we have 

(4.9) max Wj ? CFmax IAhWI + h 2 max IAh WIl 
Oh Oht Oh(2) UQh(3) 

Let us now use (4.7) to estimate W = - )h where so is the torsion function 
defined by Apo =-1 on Q, o 0 on aQ and D,(x) = 1? Unh gh(x, y), which satisfies 
Ahh =h -1 on Q, U Q(2,2. If aQ is sufficiently smooth, f satisfies (2.5) and we see from 
(4.7) that 

max Ih -<Ih Ch 4 
+ max [1,h - < Ch 4 + max L'4hI + max I%j. 

Qh Q2h(3) Qhz(3) Qh(3) 

Now, so = 0 on a0, so l(x)j < Cli for Ix - a2 = min,,,, Ix - yI ? Ch. Also, 
4)h =1h2 on 92(1) by definition. Hence, 

IT'h(x)I ? kso(x)1 + max I )h - I < C/i 
Qh 
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for x - 
O21 :!< Ch, i.e., 

(4.10) h2 E gh(x, y) < Ch. 
vIQh 

Next, we consider the function 

fh(x, y) = C1 - C2 log (Ix -y12 + h2). 

It is easily verified that 

-Ah,,fh(X, y) >_ 0, X h 0 42) y X 

- Ah,.fh(X, y) -> h , h h ,y=X 

provided C2 > 4 log 2. If we choose 

C1 = C2 max log (Ix - yj2 + h2), 
x, CEih 

then fh(x, y) > 0 for x, y E U. Thus, we see that 

9J(fh - gh) >_ 0, 

and, since 9% is monotone, 

(4.11) 0 < gh(x, y) < Cl - C2 log (Ix -y12 + h2). 

Analogous inequalities to (4.1 1) are proved by Bramble and Thom6e in [3] for discrete 
Green's functions of positive-type operators. Here, we see monotonicity was sufficient. 

An easy consequence of (4.11) is 

(4.12) h 2E [gh(X, y)]2 C. 

5. More Inequalities for Green's Functions. This section will be devoted to 
derivations of some inequalities of more difficulty than those of the previous section. 

Recall that (D = [gh(x, y)]X, I/ f is the inverse of [h21h(x, y)]A, v E 

The inequality which we next wish to derive is 

(5.1) > gh(x, y) < C 
vEQh2/' I 

for all x E Q,, where Q" = {x (E Q,: lh(x, y) # 0 for some y E Q(2) U Q(3) }. The 
method of proof is the matrix splitting technique employed by Bramble and Hubbard 
in [2]. The analysis which follows is regrettably detailed. 

Let us write 

(5.2) = [I - H1 - H2]-1 

where D3 is the diagonal matrix with 

dXl= 1, x E h 
= X C &I (32) 

5,X (E Qh2 1~~~~~ 
x ( h 
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and 

[HL]xl, =As, xG E 0, Ix-YI = h, 

=~ 1 x & (2C , x-y= h, 

= 0, otherwise, 

[H2]xu 2 x of Qh=XY h, 

6 - hx C Q, YI = 2h, 

=1 X he Q2), Ix-yl = h, 

= 0, otherwise. 

Let us define the diagonal matrix D by 

E= (I - H)= 7, x e 

= - X E (2) 

- 1, X e 
(3 

so that D( - H1) has row sums one, i.e., 

(5.3) E [D(I - Hi)]zv = E [(I - Hl)-'D-']XU 1. 
VEnlh VEQh 

We write [I - H1 - H2] = [D-1(I - H)][D(I - H1)], where H DH2(I -Hl)-D- 
Thus, by (5.3), 

E [D (I- H)]xv = 3 [D'(I - H)]v[D(I- Hl)]v. 

(5.4) = E [I - Hi - H2 0, x ? s X ;h J Qh 2 

z E O h 

Z~~~~~~5A2h~ ~ ~ ~ ~ ~ ~ ~ 
- 1, X E Qh 

Now, we consider the characteristic function of Q: 

x(x) - (, of 5 h 

= 0, x E 0(2) U Q (3) 

Then 

1 x(x) {[(I- H)'D][D-'(I - H)xI}l 

- [(I - H[-'D]xA[D]'(I - H)X]v 

VEQh(' 
, 

hS + [(I - H[H1D]xy[D-1(I - H)] y 

VEQh ' Z Eh 

- E [(I - H)-'D]Y[D-1(I - H)(1 - X)]v 
VU:)h' 

+ E [(I - H)1 D]XII[D-(I - H)X]Y. 
YE: h (2 ) UQh (3) 
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By (5.4), the first term vanishes. Using the definitions of H and x, this can be written as 

E [(I - H)-1D]2 E [H2(I- H- ) D ]vz 
(5.5) V CzQh' yE:f?h2 )UQh (3 ) 

- : [(I - H)-1 D].,, E [H (I - Hj)-l D-']y. < 1 . 

Now, we estimate the factors in each term. First, note that (I - H)-' > 0. This is 
not obvious, but follows from H _ 0 and p(H) < 1. That H _ 0, is due to 0 < 
H2(I- Hi)- = H2 + H2H1 + , since the negative terms in H2 are cancelled by 
positive terms in H2H1 as in [2]. That p(H) < 1 is due to p(H) = p((I - Hi)-H2) < 1, 
since the row sums of 

(1 - (I - H1)-'H2) =(I - HI)-'(I - H1 - H2) 

= (I - H1 - H2) + H,(I - H1 - H2) + 

are positive. Again negative row sums of (I - H, - H2) are cancelled by correspond- 
ing positive row sums of H1(I - H1 - H2). 

Next, for y CE Q2) j U 0 (3 

E [HA(I- Hl)-Dl]yz 

< [H2(I - Hl)-'D-] = , [D-1 - D-1(I- H)]v2 
zE:12h t0 

? 1 - E [DLF(I - H)]2. = 1 - > [I- H1- H2]2Z < 1. 
ZElsh zEnlh 

Now, we consider, for y CE Qh the term 

(5.6) E [H2(I- H-)- D- 
ZEf2h(1)Uf?h(3) 

Expanding the summand in a Neumann series, it becomes 

[(H2 + H2H1 + H2H2 + ...)D-']. 

If y EE Q,1' Z C 2t2) U Q3? is such that lIY - z 2h, then [H2].-, 1/60. However, 
let x be the point such that lIY - xl = -zI = h. Then [H2H1]Y, contains the term 
[H2] 2[Hl]zz 4/225. Similarly, each negative term in H2H1 is compensated for by a 
positive term in H2H,'+. Thus for y C Qhtn 

Z [H2(I1- H1) D ]26- [ 60 + 225 2 1800 

It follows from (5.5) and the above that 

(5.7) E [(I - H)-'D]v < 1800{1 + E [(I- H)Y1D]}. 
V E h'' VE=Qh (') Ugh( 

By similar reasoning, using the function 

x(x)-1, x h Q'hU 42 

=0, x hg 1, 

it can be shown that 
E lnha r(I - H)y1D],, ? C. The argument is carried out in 

[2, Lemma 3.3]. Finally, we note from (5.4) that 
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(5.8) 1 > [(I- H)-'D > E [D-'(I - H)], - E [(1 - H)'D]:l. 
VCE2h z G lh YGQh 

Combining the above with (5.7), we see that 

(5.9) >3 [(I- H)['D]XY C. 
V CQ h II 

From (5.2) and (5.3), we finally have 

9h g(x, y) > [(I - H1 - H2)YlY']zv = 23 [(1- H1- ) 
VEHUh, vEi S lh ' 'U2h " 

1 E E { 
~[D(I - Hl)] 1 } z[(I- H) 1 D]ZV 

VEG2hl zE:QhUQh(2) 

5 max > [(I- H)-'D]ZV$ 
ZEWhUQh(2) VeQh' ' 

or, from (5.9), 

(5.10) > gh(x, y) < C, 
VEilh ' 

the desired estimate. 
We next define another Green's function Gh by 

(5.11) -AAhGh(x, y) = hI (x, y), x, y Qhx 

Although Gh may not be nonnegative, it is a perturbation of gh. We have 
THEOREM 5.1. For any mesh function S, 

max >3 I[GA(x, y) - gh(x, y)]S(y)| 
XG1)h V1JSh 

(5.12) [ 
< C max ISI + max > gh(x,Iy) IS(Y)j. 

-Qh (3) XrEQh"UQh(2)UQh() YC-ih 

Proof. Let x0 C Q be the point where E>E Ph l[Gh(x, y) - gh(X, y)]S(y)| attains its 
maximum and let 

W(x) = [G,h(x, y) - gh(X, y)]S*(y), 

where S*(y) = IS(y)l sgn [G,,(x0, y) - gh(Xo, y)]. Employing (4.9), we have 

max I WI ? C max h2A,, WI 
Qh Ph (3 ) 

< C[max ISI + max 31 gh(X, Y)S*(Y)l] 
- fh (3) XEOh' "JOh (2 )UQh(a) 

and (5.12) follows. 
COROLLARY 5.2. For all x, z EE h, 

(5.13) E IG,,(X, Y)I < C, 
VYEh' 'UQQh(2)UQh(3) 

(5.14) h2 >3 IG,(x, y)[ < C, 

(5.15) IGh(X,z)I ? C Ilog hi, 

(5.16) h2 > IGh(x, .V)12 X C, 
UEQh 
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andfor- lx - aOl Ch 

(5.17) h2 GI, (x, y) I < Ch. 
YEPh 

Proof. For (5.13), employ the characteristic function of Q' U Jh2) )U Q(3 as Sin 
(5.13). Then apply the triangle inequality and (4.4), (4.5), and (5.10). For (5.14), 
let S = h2 and use (4.6) and (4.10), respectively. For (5.15), let S(y) = 6(y, z) in (5.12), 
apply the triangle inequality and (4.11). For (5.16), let x0 be the point where 
max . h2E ve?h IG,(x, y) 12 is attained, and let S(y) = h2Gh(xo, y) in (5.12), from 
which it follows that 

h2 1 IGh(x, Y)12 < Ch2 max |G(xO, y)l + max h2 E gh(x, y)Gh(xo, y). 
V1Q/h Vefh ( 3 )h 2EQh 

Again, using (5.12) with S(y) = h2gh(x, y) for x fixed, 

h2 , Gh(xo, y)gh(x, y) < Ch2 max Igh(X, Y)| + max h E gh(Xo, y)gh(;x, y) 
VEQuh fvIEh (3) xoE Qj v VEQh 

By (4.11), this term can be seen to be bounded. Finally, letting S(y) = h 2 (yo, y) in 
(5.12), we have, for any yo eCQh, 

1h2Gh(xO, Yo)I < C[h2 + max h2gh(x, YO)] 

which indeed tends to zero as h does, by (4.11), and (5.16) follows. For (5.17) use 
S = h2 and (4.10). 

We require yet one more Green's function Gh defined by 

(5.18) -AhGh(x, y) = h 2 6(x, y), x E 9, G(x, y) = 0, X C Q2) U s3) 

for all y C Qh. Thus, the matrix [GI(x, y)]j , ^ is the inverse of the symmetric matrix 
[h = 2l(x, ,),EI ' We show 3 is monotone by applying Corollary 3.6. First, we 

show V + 41 monotone from Corollary 3.5: we define M1 by 

[M] =V 16 
[ -]Iv , x-= 

Ix-yl =h, 

3 0, otherwise, 

for x, y C Q(, and we define 

8 
[M21 -V 1 2' X=Y, 

- V- 2 Ix y , Y=l h, 

= 0, otherwise. 

Since M, and M2 are of positive type, they are monotone, hence, so is M2, and it is 
easy to see that 

M1 ?< + 3I < M 2 
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Thus, V is monotone if its eigenvalues, necessarily real by symmetry, are positive. But 
these are h21i'p2, where pli) is the ith eigenvalue satisfying 

(5.*1 9) hV(X) + Ith Vh" (X) +0, X O, Vt)(X) = 0, X C a(2) U (3) 

In the next section, we shall show that indeed l,tih) - (i) I- 0 as h -* 0, for X\() the 
ith eigenvalue of (1.1), which is strictly positive. Thus, for h sufficiently small, V is 
monotone and Gh nonnegative. Thus, as a consequence of Lemma 3.7, 

(5.20) 0 < G'(x, y) < gh(x, y), x, y C QhE 

From (5.20), we see that all of the inequalities proved for gh hold for G,. In particu- 
lar, the difficult inequality (5.10) does, from which we prove the key inequality 

(5.21) max I W < C[max IAhWI + max WI] 
Q2h Ohl ?h(2)Uh (a) 

for all W defined on Qh. To prove this, let 

W*(x) = W(x), x E QhI 

= 0, X E Q(2) U a(3) 

Then, by (5.18), 

W*(x) h2 E G'(x, y)[-AhW*(Y)] 

- G,(x, y)[-AhW(y)1 + h E G'(x, y)[AhW(Y) -AW*(Y)], 
i h ' E h'' VE~~~~Rh' VEP~~~I~h' 

and (5.21) follows from (4.6), (5.10), and (5.20). 

6. Convergence of ,;(r) to X(n). In this section, we show that the eigenvalue 
"(n) of 

(6.1) hV2v(4)(X) ? ,(n) V,(n) (X) = 0, X E Q V(n) (x) = 0, X (E 0 2) y (3) 

converges, to X(n) of (1.1) for each n. We will use the variational principles associated 
with (1.1) and (6.1), and a technique of Weinberger [9]. 

The nth eigenvalue of (1.1) can be characterized by 

(6.2) X(n) = min max D(u)/ u2 dx, 

where u -oalu, + *.. + anun, the max is with respect to the scalars a, * , an, the 
min is with respect to choices of linearly independent ul, * * *, un, continuous, piece- 
wise differentiable functions vanishing on aQ, and D(u) is the Dirichlet integral. 

Similarly, the nth eigenvalue of (6.1) can be characterized by 

h2 E[U.2, U.22 +h 12 U2t12 
h2 

r2 (n) ~ 
z[u~+ u 1, 2 u 1 2. 

(6.3) ,4' = min max - h 2 1 , 

where U = a,U + * + an Un, the max is with respect to the scalars al, I, an, the 
mim is with respect to choices of linearly independent mesh functions U1, ..., U, 

vanishing on Q (2) U Q(3), the sum is over the mesh points of Qh, and subscript xi (xi) 



248 J. R. KUTTLER 

denotes forward (backward) difference quotient in the xi direction, i = 1, 2, i.e., 
Ux1(YI, Y2) = [U(y, + h, Y2) - U(yI, Y2)]/h, etc. 

First, we show 

(6.4) (n) < X (it) + 0(h). 

Let u/'', * * , l(n) be eigenfunctions associated with X(1), * **, X(n) in (1.1), 
u = - lul + 

a. + an), and define 

u(x)- h1 f u(y) dy, x E Q 

Qh (xw) 

- O, X ( Q2) j 0(3) 

where Qh(x) {(Y', Y2): fxi - Y'j < 1h, Ix2 - Y21 < lh} is the square of side h 
centered at x. Put this U in (6.3). Employing inequalities (2.14), (2.22) and (8.6) of 
Weinberger [9], we see that 

max (u) + 12 
f 

x + 
(X2) 

dx 

a f( u2 dx - (h2/ r2)D(u) 

and Hubbard [5, pp. 568-569], has shown 

f {(a2u)2 + (2U)2} dx C(x(n )2. 

From tlhese, (6.4) follows. 
Next, we show 

(6.5) = ? h4n + ? (h). 

Let V,.V.*) , V(n) be eigenvectors associated with 
A"'), 

. . ( ,) in (6.1), 
U = a, Vh') + - + a,, Vh(), and define u to be the continuous, piecewise linear 
function interpolating U (see [9, Section 6]). Then, by (6.4), (6.7) of [9] we see that 

h2 2 U, ? U~) 
X(n) < max- h ( Ur> + U,) 

h [ + + h2ss + h2 2i2 

< max --~2 2 + + h2 2 + 2 h 
a h2 I U2- 

1 h2 U[2u + U;2+ _ 2 ux + 22] Ux2 2 

(n) 
1-4h 

and we obtain (6.5). Combining (6.4) and (6.5), we have 

(6.6) -,h ->0 as h -- > 0, 

for each n = 1, 2, **. 
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7. Convergence of X(n to X\n by Perturbation. Next, we will show that 
the X(n) are a perturbation of the In), and that as h tends to zero, )X\n) tends to AIn', 
hence to X In) by Section 6. We employ the following theorem of Wielandt: 

THEOREM 7.1. If A, B are v X v matrices and A has an orthonormal basis of eigen- 
vectors, then the eigenvalhes of B lie in the uinion of the v discs IA') - z ?I IA - Bl I, 
where the A"' are the eigenvalties of A. If k discs are disjoint from the others, they 
contain exactly k eigenvalues of B. 

In the theoremn, | 2 is the spectral norm of a matrix, defined by 
v1/2 

IIMII12 SUP HIMS112/II&I12, where 11tt = ( "ii) 

for a v-vector i (2, , t). For a proof of the theorem, see [6]. 
We apply the theorem as follows. For A, we take the matrix [h2Gh(x, Y)] vE 

Note that the minor [h2Gf(x, y)].r,vEQk' is symmetric, while h2G,,(x, y) = for x E 
Q(2) J Q so that A has an orthonormal basis of eigenvectors, and the eigenvalues 
are simply [gui)Il plus some zeros. For B, we take the matrix [h2Gh(x, y)] whose 
eigenvalues are [X(i)f1. Thus, we must estimate I h2(Gh - G)t 12. However, for any 
matrix, 

| M 2<[p(MM7)]112 _ 11|MMT1 1112 

where t i is the maximum of the absolute row sums of the matrix. This is a con- 
sequence of the Gerschgorin circle theorem (see, e.g., r7, p. 146]). Thus, we need to 
estimate 

(7.1) h4 max E > 
[G,h(x, 

z) - G(x, z)][Gh(y, z)- G(y, z)] 
xoEQh uIh zEA~ 

h 

Let x0 be the point where the max is attained and put 

v(y) = sgn E [Gh(xo, z)- G'(xo, z)][Gh(Y, Z) -G(y, z)j. 

Then, let 

W(x) = h4 E [GA(x, z) - G'(x, z)][GA(y, z) - G'(y, z)]cr(y) 
V z EQh 

in (4.9). Then, (7.1) is bounded by 

Ch4 max E iGh(y, z) - G(y, z) I 
(7.2) ZEQh(3) VtiQl, 

+ Ch4 max , G'(x, z) Z iGh(y, z)- G(y, z)i. zESh '' ZC! h 'hES 

Now, 

h2 E iGh(y, z)- G(y, z)| I C max [IGh(Y, z)t + G'(y, z)] C CIlog hi, 
vEUA2h v, z ES2h 

by (4.11), (5.15) and (5.20). Using this in (7.2) and also (4.10) and (5.20), we have 
(7.2) bounded by Chllog hi, which tends to zero as h tends to zero. Thus, the radii 
of the discs in Theorem 7.1 tend to zero as h does. Since the 4(n) tend to the X(n), 
which have no finite accumulation point, the disc associated with [gu`l]`f for any 
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fixed n eventually becomes disjoint from the remaining discs. Consequently, for any 
fixed n and e > 0, there is h sufficiently small that 

(7~~ ~ ~ ~~~~~~ X) t(n) _>(n) I <e (7.3) - ()j<h 

8. Main Theorem. We are now ready to state and prove our main theorem: 
THEOREM 8.1. Let X(n) be the nth eigenvalue of (1.1), let \(n) be the nth eigenvalue 

of (2.6) with associated eigenvector UXn). For each n 1, 2, , there are constants 

Cn, hn such that for h < hn 

(8.1) -I( _ (n) I < Cnh4 

and there is an eigenfunction u(n) associated with X(n) such that 

(8.2) max | Un - ua" I < Cnh4. 
QA 

Proof. With the machinery generated in the previous sections, our proof will have 
exactly the form of the proof of the corresponding Theorem 5.1 of [6]. For this reason, 
we only sketch the proof. 

By (7.3) 

(8.3) j,P < C,,. 

By (5.11), (2.6) is equivalent to 

(8.4) Uh f(x) = X )hE Gh(x, Y)XUh (Y), X C Ch 

Let us use the notations 

( Us )h -2 E U(y) V()! |I Ul |h -( Us U)1h 
2 

veQh 
(Us V)h 5 h E () V(Y), |I Us )h 

2X52 ' 
() 

If Uh(n) is normalized by requiring IU' n h 1, then (8.4), (8.3), the Schwarz in- 
equality, and (5.16) show 

(8.5) max I U' ? C,,. 
52h 

From (8.4), (8.5) and (5.17), we see that for Ix - 00 _ Ch 

(8.6) |Uh (x) ? C,h. 

Let issuppose that X(n) _ X(n+l ) is an eigenvalue of multiplicity 
m + 1. Since Ah restricted to Qh is symmetric, the eigenvectors Vh() of (6.1) are a 
complete orthonormal basis on Qh 

( Vh ) = h (i, j). 

If we set 
n+m 

= X i)_ i = n, , n + m, 
i -n 

then 
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(8.7) Uhl- f;II < C.h, i=n, , n + m. 

This follows from Parseval's identity: 

uh'l Uhl2 - 
1 

( j(i))j + i 
(Uhl, va )h | 

ion, * *,n+ms 

(i) 2 

( U4 Fhi)h) + X (4) /I2h _(i (H'), VI(,'))' 
j#fl,h - h 

where H.'" is uniquely defined by 

AhH(')(x) = 0, x ( Q Hh?O (X) = U M(X), X C (2) U J(3) 

It follows from our hard-won inequality (5.21) that 

max I H,(') max | Uh |I< Cih, 
nh(2) Vf(A(3) 

by (8.6), and so 
1 1 (i)~ t;(i)1 12 a 1Uh(i) 11 12 Uh( Ui) fll(i)) Ci h2. 

In a very similar manner, we show that if 

=h _ ( h ) i = n, ,n + m, 
i-fl 

then 

(8.8) lIui" - <(iIh ? cn, i = n, , n + m. 

From (8.8), we can conclude that the (m + 1) X (m + 1) matrix [(u('", VD') )hIs 
i, j = n, * , n + m, is nonsingular. In particular then, there are eigenvectors 

n+fn 

uh= 1 aij(h)u('), i = n, *, n + m, 
i-n 

in the eigenmanifold associated with X(n) such that 

(8.9) " V)) = V h 1 = h * n , n + m. 

Moreover, the coefficients ai3(h) are bounded independently of h. 
Then, it follows from (8.9) and Parseval's identity that 

| |h _ (i) 1 2 = 2 O M 
i2 h + l (i _ (0) Vh(i)), 12 

Qht3 *,nUQhm(3) i*n, *,n+ 

=h E I Uh(i h 
^)1 

Qh ( |) UQh (3a) 

+ : E - 
- 

t ) (Hhs h )h - ( i> ( (Hh'sV )h| 

where H'i is defined by 

AhHh (x) = 0, x G Q' J7 (X) = Uhi( (X), X 
( 
2) (j Q3) 

Since lu(')(x)l < C.h for jx - 0S < Ch, we see that 

(8.10) | - uz MIh :! Cih. 
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From (8.10), we also have 

(8.11) 1( Uh hu)h Cih2 
Inequality (8.1 1) is the key inequality needed to prove the first half of Theorem 8. 1, 

for now 

(Xh") - X(i))( Uh , Uh )) (UhW, AUh") - A*hUh)) 

(8.12) = (~Uh , ThUh")h - (uh ), ThUh )h + (Uh U()h 

+ ( UUhh - u, hUh - A*Uh )h, 

obtained by adding and subtracting terms. We have used the notations 

hUh =-= AUh"i) - AhUh") 

for the truncation error, and A'* for the adjoint of AA defined by 

A h V(x) - > lh(Y, X) V(y). 
veQh 

Recall by (2.6) and our smoothness assumption on ui'" that 

thUh Ci h , on Qh 

Cih , on Q (2) U Q (3) 

However, on OM2) U Q(3) both Uhi) and u(i) are bounded by Cih, while the number of 
points in Q(2) U Q(3) is only proportional to h-'. From these considerations, we see 
that the first three terms on the right side of (8.12) are bounded by Cih4. As for the 
remaining term, 

AhUh (x) - A*U (X) 

vanishes for x ( Qht U Q(2) U 2(3), and is bounded by 

Ch-2 max u < Cij h 
Oh' 'Unhh(2)UQhh(3) 

for x E 0/1 U Qh2) U Q`). Again noting that the number of points in 9h' U Q (2) U Q(3) 

is only proportional to h-', the last term on the right of (8.12) is bounded by 

C, max IUh -u 
Oh' "Unh(2)Unh(3) 

Thus, using (8.11) we have the inequality 

(8.13) i()- XCi) I Ci[(~( L,t 0 ? h4] (8.13) hi i max |Uh -Uh + h] 
-Oh" Eunh2) unh( 

We next employ the discrete Green's function to write 

Uh (x) - u i(x) = h E Gh(x, y) 'Ah[Uh (Y) - Uh 

(8.14) h2 1j GhA(X, )rh Uh")(Y) + XC")I >h Gh(X, Y)[ Uh~(y h 
VEi2h (8.14)~~ (Ei -^x XCI)rh2hi G(x,Y)U+X)(y). y[U()y) ()( 
vEzlh 

2 
(Y + (h X) E Gh(X, Y) Uhi( 

Using inequalities (5 13) and (5.14), we see that the first term on the right of (8.14) is 
bounded by C.h4. By (5.14) and (8.5) the last term on the right is bounded by 
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Ci1x'I'- X"I, or if Ix -Qj < Cli, (5.17) shows the last term bounded by Cih 
It _ ` 1. Using (8.3), (5.16) and Schwarz's inequality bound the middle term on 

the right by IIU,,U^) - u(')i ,, or, if Ix - aQ C/i, (5.17) bounds it by 
Cih max,h I U^ ) - u ') 1. In summary, 

(8.15) max I uh- Uh<i Ci[ Uh - h ? | -X + h 
oh 

(8.16) max U Cih max Uh) - u ?) + h IX(i) - ?) + h4] 
nh' 'U0h(2)UgQh(a) Qh 

Finally, we use Parseval's identity and (8.9) to conclude that 
O 

- 
2 

12 Oj - 
2 + ii j(L4O M, Vh'i))12, 1 h - h)1 1 2 E I Uh U h | J ( Uh ui ()t1 

Q()UQh) jin, *#,n+m 

and by a straightforward computation 

(i) (i)( u(i U(i) (i))h! - ~(X)h") - A( ) M TU h Ai h V)hf 

where Ht() is defined by 

AHh ((X) 0 x E =2,' Hh (X) Uh i(X) - U(i)((X) X ( 
42)'U Q3' 

It follows that 

(8.17) | | Uh Uh" |I | h [ max Ci UhIW -uI h |2) 
? | - + h4] 

Combining (8.13), (8.15), (8.16), and (8.17) yields the proof of Theorem 8.1. 
Let us observe some simple consequences of Theorem 8.1. Since the X ") are real, 

we have 

(8.18) JRe X _('I ? Ch4 

Also, when XV) is simple, X(i' will be real for h sufficiently small. This is because the 
matrix [lh(x, y)]1 n is real. Thus, if A) were complex, its conjugate [X(i')]- would also 
be a distinct eigenvalue of A, converging to )i". But this is impossible, since [X(i)]- 
must converge to some X`' /- X(i). 

We normialized Uhi) by requiring U l ,Ui 1. This determines Uhl) only up to a 
multiplicative constant of modulus 1. If we specify this constant by requiring that 
(U() V(i) )h > 0, then when X(W) is simple, u,i) is a real multiple of u`i, as can be 
seen from (8.9). 

Theorem 8.1 shows that U.") approximates to 0(h4) an eigenfunction u,i) which 
depends on h. Properly normalized, however, Uh') will approximate to 0(h4) an eigen- 
function u(i) such that fn uo 2 dx = 1, independently of h. In particular, when X` is 
simple, U,") will approximate the unique normalized eigenfunction u('). This normal- 
ization is 

h2 a h(Y) | Uhi)(Y)2 1, 

where ah is given in the appendix of [6]. For a proof, see [6, Corollary 6.2]. 

9. Forced Vibration Problems. Let us remark that all of the results of the pre- 
vious sections hold for the problem 

(9.1) A u(x) + (q(x) + X)u(x) = 0, x E Q, u(x) = 0, x E aQ, 
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where q is nonpositive and smooth on Q, and for the discrete Green's function G, de- 
fined by 

(9.2) ('Ah,, + q(x))Gh (x, y) -h -2 (x, y), x, YEE Qh 

The proofs require only that the additional term q be carried along throughout. We 
make this remark because we next wish to consider the problem 

(9.3) Au(x) + r(x)u(x) = F(x), x CE Q, U(X) = 0, x E a Q, 

for F and r given smooth functions on Q. Problem (9.3) is a forced vibration problem 
and an 0(h2) analogue of it was studied by Bramble in [1]. 

Let us rewrite (9.3) in the form 

(9.4) Au(x) + q(x)u(x) + (sup r)u(x) = F(x), x E: Q, u(x) = 0, x C dQ, 

where q(x) -r(x) - sup, r ? 0 on Q. A unique solution u of (9.3) or (9.4) exists if 
and only if sup r is not an eigenvalue of the operator A + q. Now, we consider the 
difference approximation 

(9.5) AhUh (x) + r(x) Uh(x) = F(x), x (E Qh 

where Ah is the difference operator defined in Section 2. We prove: 
THEOREM 9.1. If (9.3) has a unique solution u E C6(%), there are constants C, ho such 

that for h < ho, (9.5) has a unique solution U, for which 

max I Uh- uI < Ch4. 
Qlh 

Proof. Let Gh be the discrete Green's function defined in (9.2). Then, for x C Oh, 

Uh(X) - U(X)| = h2 E Gh(x, y)[AhU(y) + q(y)u(y) - AAhUh(Y)- q(y) Uh(y)] 
VEQh 

= sup IqI h2 E IGh(X, Y) II Uh(y) - u(y)l + h' Z IGh(X, )l IrhU(y)I. 
Q VEQlh vEig 

Therefore, using (5.13) and (5.14) for Gh of (9.2) and (2.5), 

(9.6) | Uh(x) - U(X)j _ C[h E IGh(x, Y) II Uh(y) - u(y)I + h'] 
VCEQh 

Employing (5.17), this yields 

(9.7) max I Uh-ul _ C[h max I Uh-u I +h4], 
QhW9uuh(s) Q z 1 

while (5.16) and Schwarz's inequality yield 

(9.8) max I Uh - uI < CII I Uh - U Ih + h']. 
Qjh 

From (9.7) and (9.8), we see 

! IUh - Ul Ih -<?|II Uh - ulIh + Ch12 max I Uh - Ul 
Uh(2)UQh(3) 

? 
II Uh 

- uIlhI + Ch 2[h I Uh 
- UIIh + h 4], 
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which implies 

(9.9) |Uh - Ul Ih ? C[I Uh - ull| + h4]. 

Finally, we complete the proof by using Parseval's identity to estimate 
_ _ ~~~~~~~1/2 

(9.10) | |Uh - || = [X ( U, - u Vh )) |2] 

where VWi is the eigenvector associated with A(" in the symmetric problem 

OhV (x) + (q(x) + 4h () Vh(' (X) = , X C Q, V (X) = 0, X (E Qh(2) U 9 (3) 

Define IA by 

AhHh(X) + q(x)Jh(x) 0 , x ( 2 HA(x) - Uh(x) U(X), X ) Qh U Qh 

From (5.21), we have 

max I Hh C max IUh-u!, 

or, employing (9.7), (9.8), (9.9), 

(9.11) max IHi, < C[h Uh, - uh + h 4]. 

Then, we have 

-h u( V U, )h = (HI, + U - Uh, (Ah + q) Vh')h + A(4"(Hh, Vh )h 

- ((Ah + q)(Hh + u - Uh), J{')h + 
h 

(Hh, V i))h 

- (sup r)( Uh - u, - (hAU, V( )h + /4 (Hh, ) 

Now, since sup r is not an eigenvalue X(W' of A + q and ,uj") i') as h 0, there 
are constants C, ho such that for h < ho, 

max ftzi) - sup rl' < C, max - sup rh < C, 
i i 

and so 

|( - U Vh ?)h C[h(ThU, Vhh + h(Hh, Vh )h 

Using this in (9.10), we see that 

hUh - uI|h - C[LhrhUIIh + |HhHIIhI ? C[h4 + h h|Uh - uhI'], 
by (9.11), from which it follows that 

|Uh - ul I< Ch 

completing the proof. 
Let us remark that by employing the results of [6], the above technique of proof 

will show that a unique solution of the forced vibration problem 

(912-ya ai(x) -+ ? r(x)u(x) = F(x), x 
(9.12) i =I l'xu xaxi 

u (x) 0, x E 0, 
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can be approximated to 0(h12) by using the symmetric difference scheme given in [6] at 
the beginning of Section 7. 
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